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a b s t r a c t

Human and bovine respiratory syncytial viruses (HRSV and BRSV) are two closely related, worldwide
prevalent viruses that are the leading cause of severe airway disease in children and calves, respec-
tively. Efficacy of commercial bovine vaccines needs improvement and no human vaccine is licensed
yet. We reported that nasal vaccination with the HRSV nucleoprotein produced as recombinant ring-
shaped nanoparticles (NSRS) protects mice against a viral challenge with HRSV. The aim of this work
was to evaluate this new vaccine that uses a conserved viral antigen, in calves, natural hosts for BRSV.
Calves, free of colostral or natural anti-BRSV antibodies, were vaccinated with NSRS either intramuscu-

TM

ucleoprotein
alves
ronchopneumonia

larly, or both intramuscularly and intranasally using Montanide ISA71 and IMS4132 as adjuvants and
challenged with BRSV. All vaccinated calves developed anti-N antibodies in blood and nasal secretions
and N-specific cellular immunity in local lymph nodes. Clinical monitoring post-challenge demonstrated
moderate respiratory pathology with local lung tissue consolidations for the non-vaccinated calves that
were significantly reduced in the vaccinated calves. Vaccinated calves had lower viral loads than the non-
vaccinated control calves. Thus NSRS vaccination in calves provided cross-protective immunity against

dvers
BRSV infection without a

. Introduction

Human and bovine respiratory syncytial viruses (HRSV and
RSV) are two closely related, highly infectious, worldwide preva-

ent viruses that are the leading cause of acute lower respiratory
ract disease in children and calves, respectively [1]. RSV is a nega-
ive strand RNA virus that belongs to the Pneumovirus genus within
he Paramyxoviridae family. The frequency and seriousness of BRSV

iseases are regarded as the principal health problem in calf rearing
orldwide and are responsible for large economic losses in dairy

nd beef farming. The frequency of BRSV infections is very high
n cattle less than 1-year-old and the virus may be responsible for
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more than 60% of the epizootic respiratory diseases observed in
dairy herds and up to 70% in beef herds [2]. Mortality caused by
BRSV infections ranges generally between 0.5% and 3% but can reach
up to 20% in some outbreaks [3]. The control of BRSV infections is a
high priority for animal health and farming organizations, not only
for economic reasons, but also due to the impact on animal welfare.
Several commercial BRSV vaccines, including modified-live virus
and inactivated single fraction are available for use in cattle. Their
efficacy needs improvement in terms of duration of protection, clin-
ical and virological protection. Even though the commercial bovine
vaccines probably have reduced the prevalence of infection, BRSV
continues to circulate in cattle populations.
No commercial vaccine is available against HRSV, a pathogen
of major importance in infants. HRSV induced-bronchiolitis is the
most common cause of infant hospitalization in industrialized
countries and is a suspected risk factor of recurrent wheeze and
asthma in later life [4]. The main reason for the lack of human

http://www.sciencedirect.com/science/journal/0264410X
http://www.elsevier.com/locate/vaccine
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accine is the dramatic failure in the late sixties of a formalin
nactivated HRSV vaccine that not only failed to protect against sub-
equent infection but also induced exacerbated disease in children
5]. Vaccine augmented disease has also been described in calves
nd some commercial BRSV vaccines were withdrawn from the
arket for that reason [6,7]. Other obstacles to vaccination exist,

uch as the need to immunize immunologically immature young
nfants and the presence of maternal antibodies that can have a
trong suppressive effect on the outcome of vaccination, both in
nimals and humans.

Experimental models in rodents have been developed to find out
he immune correlates of protection versus disease exacerbation
nd help the conception of safe RSV vaccines. Altogether these stud-
es highlight the delicate tuning between cytotoxic anti-viral CD8
cells and RSV-specific antibodies, which, although generally pro-

ective against RSV infection, may both have deleterious effect [8].
or instance, poorly neutralizing antibodies with low avidity for the
rotective RSV epitopes can lead to enhanced respiratory syncytial
irus disease [9]. The RSV-F and G glycoproteins, which are situated
t the surface of the virions, are the targets of neutralizing antibod-
es. Research on HRSV subunit vaccines has essentially focused on
hese two proteins, by using chimeric FG glycoprotein, full-length F
roteins or a recombinant protein containing the central antigenic
omain of the HRSV G protein fused to the C-terminal end of the
lbumin-binding domain of the streptococcal G protein [10]. How-
ver, recombinant G and F or chimeric FG were often found to cause
nhancement of lung pathology upon RSV challenge, in association
ith the priming of Th2 cells [1,11].

In addition to the risk of disease exacerbation by vaccination,
nother critical issue for human or bovine RSV vaccination is the
ariability of the viral isolates circulating worldwide. An effec-
ive bovine or human vaccine should protect against all of them.
he nucleoprotein (N) that covers the viral RNA genome, form-
ng the viral nucleocapsid, is the most conserved of RSV proteins
nd is a major target of the cellular immune response against RSV
12–14]. Thus, contrary to F or G antigens, N based vaccines offer the
ossibility of T-cell-mediated cross-protective immunity against
irculating RSV. Strategies aimed at using N in a vaccine to stimulate
cell immunity have focused on live-attenuated virus vector and on
NA vaccine. Vaccination of mice with recombinant vaccinia virus
ncoding the HRSV N protein induced partial protection [15,16].
imilarly, immunization of young calves with a recombinant vac-
inia virus expressing the BRSV N protein induced non-neutralizing
ntibodies and primed BRSV-specific proliferative T response and
FN-� production that resulted in reduction of viral replication in
he upper and lower respiratory tract [17]. DNA immunization by
wo administrations of plasmids encoding BRSV-F and N proteins
rimed a strong cell-mediated immunity in calves, which drasti-
ally reduced viral replication, clinical signs and pulmonary lesions
fter a highly virulent challenge [18]. More recently a nucleocapsid-
ased DNA prime–protein boost vaccination was shown to confer
rotection against BRSV replication and lung pathology [19].

Compared to DNA, or live-attenuated vector vaccines, subunit
accines are safer because they do not present the risk of replica-
ion/integration of genetically modified material. However subunit
accines using the nucleoprotein (N) have been poorly investi-
ated, in part because a recombinant N was difficult to produce
s a soluble protein. We have set up an original technology to
ngineer circular nanoparticles composed of 10–11 recombinant
[20], the 3D structures of which have just been solved [21]. These

anoparticles are named NSRS for sub-nucleocapsid ring structures

20]. Intranasal vaccination of mice with HRSV NSRS nanoparticles
rimes N-specific CD4 and CD8 T cells and significantly reduces
iters of RSV in the lungs of mice following HRSV challenge with-
ut signs of disease exacerbation [22]. One major limit of the mouse
odel is the absence of respiratory disease in response to RSV infec-
 (2010) 3722–3734 3723

tion. Therefore the objectives of the present study were to evaluate
the potency of NSRS as a vaccine in calves that are the natural host
for BRSV and that display clinical respiratory symptoms and lung
lesions upon infection. Because the N amino acid sequence is highly
conserved between bovine and human RSV strains (≈94% amino
acid identity), we took it as an opportunity to test whether NSRS

from HRSV strain Long would provide cross-protective immunity
against viral challenge with a BRSV strain. The data presented in this
study showed that vaccination with the nano-rings NSRS partially
protected against both respiratory disease and virus replication
upon BRSV challenge without signs of vaccine-mediated disease
exacerbation.

2. Materials and methods

2.1. Plasmid constructions

The pGEX-PCT (coding for residues 161–241 of the C-terminal
fragment of the phosphoprotein, named PCT, fused to glutathione-
S-transferase) and pET-N plasmids which contain sequences from
the HRSV Long strain have been described previously [20]. Random-
primed cDNA synthesis was done using SuperscriptII (GIBCO,
Invitrogen Life Science, France) and 1 �g of total cytoplasmic RNA
isolated from bovine Turbinate cells infected with the A2Gelfi strain
of BRSV [23,24]. The cDNAs were amplified by PCR with high
fidelity PfuTurbo Polymerase (5U, Stratagene, Agilent Technologies,
France) and 100 ng of the following primers:

N-A2G+: 5′-GAGGAGCCATGGCTCTTAGCAAGGTCAAACTAAATG-
3′;
N-A2G−: 5′-GAGGAGCTCGAGTCACAATTCCACATCATTATCTTTGG-
3′;
P-A2G+: 5′-GAGGGATCCATGGCTGCTCGTGATGGTATAAGAGATG-
CCATG-3′;
P-A2G−: 5′-GAGGAGCTCGAGTCAGAAATCTTCAAGTGATAGATCA-
TTGTC-3′.

The amplified full-length cDNA coding for BRSV N protein was
digested subsequently by NcoI and XhoI and cloned into pET-28a(+)
vector (Novagen, Merck Chemicals products, Germany). The PCT
coding for amino acid residues 161–241 of BRSV P protein was
digested subsequently by BamHI and XhoI and inserted into the
pGEX-4T3 expression vector (Pharmacia, France). Constructs were
verified by sequencing.

2.2. Expression and purification of recombinant HRSV and BRSV
proteins from E. coli

E. coli BL21(DE3) (Novagen, Merck Chemicals products, Ger-
many) cells were co-transformed with the pGEX-PCT and pET-N
plasmids coding for either BRSV or HRSV proteins. Recombinant
protein expression was induced by IPTG and proteins were puri-
fied by glutathione–Sepharose affinity (Pharmacia, France). HRSV
N + PCT complexes were separated from glutathione–Sepharose
beads by biotinylated-thrombin cleavage in Tris 10 mM pH 8.5,
NaCl 140 mM and thrombin was removed by the Thrombin Cleav-
age Capture kit according to manufacturer’s instructions (Novagen,
Merck Chemicals products, Germany). This protocol allows the
purification of recombinant HRSV N proteins via their capacity to
interact with the C-terminal fragment of P fused to GST (named

GST-PCT) as previously described [20]. According to this procedure,
10 to 11 N proteins assemble into ring-shaped structures containing
RNA subsequently named NSRS for sub-nucleocapsid ring struc-
tures [20]. Two hundred and fifty milligrams of HRSV NSRS were
produced.
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.3. Adjuvant and vaccine formulation

For i.m. injection, NSRS was formulated in MontanideTM ISA71
G (SEPPIC, Air Liquide, France) at a final concentration of 1 mg/ml.
ontanideTM ISA 71 VG is a blend of oil and an ester from mannitol

ugar and oleic fatty acid (anhydromannitol octadecenoate ether)
ith specific emulsifying properties due to its sugar polar head, its
on-ionicity and the specificity of fatty acid chains of the surfactant
ystem. The oleic acid and the sugar polar part used are from a
egetable origin. Experimental small scale vaccine emulsion was
erformed using silverson L4RT with tubular system mixer. The
atio of MontanideTM 71 VG/aqueous phase was 7 g of adjuvant/3 g
ntigenic phase. MontanideTM 71 VG was added first in a beaker
nd the head of the silverson was placed in the oil with agitation
t 1000 rpm. The appropriate amount of antigenic phase (at the
ame temperature than the MontanideTM 71 VG) was then added
rogressively, and the rotation speed was increased to 5000 rpm for
min, with gentle moving of the beaker. To control that NSRS were
ot denatured in emulsion with MontanideTM ISA71 VG, 0.1 ml of
utanol was added to 1 ml of emulsion, resulting in separation of
queous and organic phases. Proteins present in the aqueous phase
ere dosed and imaged by negative-stain microscopy with a Philips
M12 microscope operated at an accelerating voltage of 120 kV.

For i.n. administration, NSRS was formulated in 25% (V/V)
ontanideTM IMS 4132 VG (SEPPIC, Air Liquide, France) at a final

oncentration of 5 mg/ml. MontanideTM IMS 4132 VG is a ready
o dilute water-soluble vaccine adjuvant. MontanideTM IMS are
n association of apolar amphiphile nanoparticles combined with
soluble immunostimulant. All raw materials used in this for-
ulation have monographs in different pharmacopeia and/or are

lready used in injectables for human. This adjuvant has been
pecifically selected for the intranasal trial due to its high spread-
bility. Experimental vaccine formulation was done by a simple
ilution of the antigenic media in the adjuvant under gentle mag-
etic steering.

.4. Virus and inoculum preparation

BRSV isolate 3761 (BRSV-3761) was isolated from a nasal swab
f a calf with distress respiratory syndrome in 2003 [1]. The virus
as then replicated for five passages in Bovine Turbinate cells

American Type Culture Collection, CRL 1390) and was amplified by
passages in newborn calves to give the BRSV-3761 inoculum. Pas-

ages in newborn calves were performed as follows: a 2-days-old
alf, deprived of colostrum and maternal antibodies, was inoculated
y intranasal and intratracheal routes with 106 PFU of BRSV-3761.
alf was euthanized under anesthesia 5 days later and broncho-
lveolar lavage (BAL) was performed in the lung with 500 ml
f MEM medium supplemented with enrofloxacin (0.02 �g/ml,
aytril 5%, Bayer, France) and fungizone (2.5 �g/ml, Invitrogen Life
cience, France). This BAL was snap frozen at −180 ◦C. The same
ethod was used to obtain and store BAL at the second and third

assages. The challenge inoculum of the present study consisted of
he BAL at the third passage and was free of the following bovine
espiratory pathogens: Mannheimia haemolytica, Pasteurella multo-
ida, Mycoplasma bovis, Bovine Viral diarrhea virus (BVDV), bovine
arainfluenza type 3, bovine Adenovirus 3, bovine coronavirus,
nd bovine herpesvirus 1. The titre of the challenge inoculum was
× 103 PFU/ml. Infectivity of the inoculum was controlled after
hallenge (3.8 × 103 PFU/ml, when tested 6 h after experimental
nfection).
.5. Experimental design (Table 1)

Twenty-four Normandy × Holstein breed male calves were
elected at birth, reared in isolation unit (A2 level of bio safety, INRA
8 (2010) 3722–3734

Experimental Platform of Infectiology, Nouzilly, France) from birth
to euthanasia and allocated to specific units, according to experi-
mental groups. Animals were housed in biocontainment facilities as
prescribed by the guidelines of the European Community Council
on Animal Care (86/609/CEE) and under the authority of licence
issued by the Direction des Services Vétérinaires (accreditation
number 31–234). Calves were colostrum deprived until 3 days
after birth and then received a substitute of colostrum (CER Mar-
loie, Belgium) by oral route for 4 days to protect them against
enteritic pathogens. They were fed with commercial milk for first
age (Sanders Ouest SAS, Champagne, France). Antibiotics (1 mg/kg
cefquinome, Cobactan, Scherring-Plough Intervet, France) were
administrated from birth to 7 days. Absence of maternal antibod-
ies against BRSV was confirmed by IgG detection (indirect BRSV
ELISA, LSI, Lissieu, France) in blood of calves at 7 days after birth.
BRSV ELISA was also performed each week before inoculation, to
rule out natural BRSV infection during rearing. Absence of BVDV in
calves was assessed at birth and one week before challenge by neg-
ative detection of the BVDV p80-125 antigen (Serelisa BVDV-BD,
Synbiotics, Lyon, France) and by negative RT-PCR [25]. All calves
remained healthy during the 3-month period before challenge. At
the end of the experiment all calves were found seronegatives for
bovine parainfluenza type 3.

Calves were randomly allocated in three groups. They were
1-month-old ±10 days at day of vaccination (considered as day
0). The first group (8 calves) was vaccinated twice at 3 weeks
interval with 2 mg of NSRS protein with MontanideTM ISA71 VG
adjuvant by the intramuscular route (2 ml, left flank). The sec-
ond group (8 calves) received twice at 3 weeks interval 2 mg of
NSRS protein with MontanideTM ISA71 VG adjuvant by the intra-
muscular route (2 ml, left flank) and 10 mg of NSRS protein with
MontanideTM IMS 4132 VG adjuvant by the intranasal route (1 ml
per nostril, using a nebulizator device for medical use, MADgic700,
Wolfe Tory Medical, Utah, USA). The doses of antigen were defined
according to one preliminary experiment done in calf to test the
safety and immunogenicity of the NSRS/adjuvant formulations (not
shown). The last group (8 calves) was untreated and served as neg-
ative control for the two vaccination regimen. Three weeks after
the final vaccination, all calves were challenged with 105 PFU of
the BRSV-3761 inoculum by intranasal nebulization (10 ml, tra-
cherine IBR vaccine nebulizator) and intratracheal route (10 ml,
Intraflon 2 catheter, Vycon, France). Two calves per group were
euthanized under general anesthesia overdose (5 mg/kg ketamine
followed by 15 mg/kg pentobarbital sodium) 6 days post-challenge
(day 48), the remaining being euthanized 20 days post-challenge
(day 62).

2.6. Clinical examination

Calves were observed for clinical signs of respiratory tract dis-
ease from 3 days prior infection to 20 days post-infection. Clinical
assessments were made at the same time twice a day by the
same veterinarian. Calves were examined for body temperature,
nasal discharge, coughing, decrease appetite, general state, abnor-
mal breathing, respiratory rate and abnormal lung sounds. Clinical
scores were done for each calf as already described [26] with slight
modifications. Rectal temperatures and respiratory frequencies
were evaluated separately. Scores for respiratory rates (RR/min)
were 0 (RR < 35), 1 (35 < RR < 45), 2 (45 < RR < 60) and 4 (RR > 60). A
score between 0 (normal), 1 (mild) or 2 (severe) was attributed for
nasal discharge, coughing, decrease appetite, general state, dysp-

noea, and abnormal lung sound parameters, respectively. A fold
coefficient of 3, 1, 3, 2, 2, 3 and 3 was subsequently attributed
for respiratory rate, nasal discharge, coughing, decrease appetite,
general state, dyspnoea, and abnormal lung sound parameters,
respectively.
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Table 1
Study design.

Group label (no.) Vaccination (s) Challenge No. of euthanized calves

Day 0 Day 21 Day 42 Day 48 Day 62
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No vaccine (n = 8) – –
NSRS i.m. (n = 8) NSRS/ISA71 i.m. NSRS/
NSRS i.m. + i.n. (n = 8) NSRS/ISA71 i.m. NSRS/IMS4132 i.n. NSRS/

.7. Fluid and tissue samples collected

To follow antigen-specific antibody responses, nasal swabs in
BS 0.1% Tween and anti-proteases (Complete Mini, Roche Applied
cience, Indianapolis, USA) and blood samples were collected at
ays 0, 20, 41 and 62. To monitor virus detection after challenge,
asal swabs were collected daily from days 39 to 62 from each
nimal in 1 ml of RLT-buffer (Qiagen S.A., France) for real time RT-
CR or in 1 ml PBS buffer for commercial EIA assay (Speed® ReSpiVB
VT, La Seyne-sur-Mer, France).

Complete necropsies of calves were performed immediately
fter euthanasia at days 48 and 62. Lymphatic nodes (prescapular,
racheo-bronchial and mediastinal) were dissected out and pro-
essed for subsequent T cell assays. Lung macroscopic lesions were
ecorded on a standard lung diagram and expressed as % pneu-
onic consolidation of the cranial lobes (photographs were taken).

AL was performed with 500 ml D-MEM supplemented with antibi-
tics. After cell numeration, 2 × 105 BAL cells were cyto-centrifuged
Cytospin 4, Shandon, Thermo Scientific, France) on Superfrost
lus slides (SFPLUS-42, Milan, France) for May-Grünwald-Giemsa
taining, and 2 × 106 cells were fixed in Cyto-Chex (Streck,
E, USA) for flow cytometry analysis. The left-over BAL cells
ere lysed in RLT-buffer (RNeasy Mini, Qiagen S.A., France) for
NA extraction. Microscopic analysis was performed on tissue
amples from the right cranial lobes of lungs, fixed in formalde-
yde, embedded in paraffin, 4-�m sectioned, deparaffinized and
ounterstained with hematoxylin/eosin/saffran, analyzed and pho-
ographed. Examination for bacterial infection was performed on
he same tissue samples after Gram staining. Samples of cra-
ial lobe of the lungs were also collected in RNAlater (Qiagen
.A., France) for subsequent BRSV quantification by real time RT-
CR.

.8. Real time RT-PCR

Virus shedding in nasal swabs was quantitatively determined
y a real time RT-PCR assay according to Boxus et al. [27] except
hat quantitative analysis of BRSV RNA was performed relative to
he bovine glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
xpressed housekeeping gene [28]. The same RT-PCR was used for
uantification of BRSV in BAL and lung tissues.

.9. Immunostaining of BRSV antigens in lung tissue sections

Paraffin-embedded lung tissue sections were deparaffinized,
ehydrated in Tris 0.05 M pH 7.4 with 0.2% CaCl2 and then per-
eabilized with 0.02% Saponin (Sigma–Aldrich, France). BRSV

ntigens were detected using MoAb IgG2b anti RSV-F (clone
016, AbD Serotec, Germany) diluted 1:100 in Tris 0.05 M
H 7.4, 0.2% CaCl2 and 0.02% Saponin. An irrelevant isotype-
atched mouse Ab was used as a control for non-specific
taining. Binding of primary Ab was revealed by adding HRP-
onjugated anti-mouse IgG followed by the insoluble peroxydase
ubstrate 3,3′-Diaminobenzidine (SigmaFastTM, Sigma–Aldrich,
rance). The tissue sections were then counterstained with hema-
oxylin.
BRSV 2 6
i.m. BRSV 2 6
i.m. NSRS/IMS4132 i.n. BRSV 2 6

2.10. Flow cytometry analysis of BAL lymphocytes

One million BAL cells were incubated for 20 min in RPMI con-
taining 10% horse serum (RPMI-HS) on ice. BAL cells were then
stained for 30 min on ice with mouse MoAbs anti-bovine CD4
(IgG2a, clone ILA11, VMRD, WA, USA), CD8 (IgM, clone BAQ111A,
VMRD, WA, USA) and CD45RO (IgG3, clone ILA116, VMRD, WA,
USA), or matching isotype control mouse antibodies, all diluted
1:500 in RPMI-HS. BAL cells were washed and then incubated for
another 30 min with anti-isotype antibodies conjugated to fluo-
rochromes (FITC anti-IgG3, PE anti-IgG2a, Cy5 anti-IgM, Invitrogen
Life Science, France). Cells were then fixed in 10% CellFIX (BD Bio-
sciences, France). All samples were analyzed on a FACScalibur (BD
Biosciences, France) collecting data on at least 20,000 lymphocytes
gated according to their forward and side scatter features.

2.11. Preparation of lymph node cells

Lymph nodes were mechanically disrupted for cell dissociation
in sterile RPMI-1640 medium plus 10% fetal calf serum (FCS) at
4 ◦C. The recovered cells were filtered through a sterile 100 �m cell
strainer (BD Biosciences, France) and washed twice in RPMI-1640
medium plus 10% FCS. PBMC and lymph node cells were finally sus-
pended in X-vivo 15 medium (BioWhittaker, Lonza, Switzerland)
supplemented with 1% FCS, 2 mM l-glutamine, 100 U/ml Penicillin
and 0.1 mg/ml Streptomycin and cultivated in vitro for T cell prolif-
eration or IFN-� detection assays.

2.12. Antigen-specific lymphoproliferation assays

Proliferation assays were carried out in 96-well flat-bottomed
plates. Isolated lymph node cells were seeded in triplicate at 3 × 105

cells per well with or without NSRS (10 �g/ml final concentration).
Plates were incubated at 37 ◦C in 5% CO2 for 96 h, then pulsed
overnight with 1 �Ci [3H]-thymidine per well. Cells were then col-
lected on filter mats using a cell harvester (Filtermate, PerkinElmer,
France) and radioactivity was measured in a liquid scintillation
luminescence counter (MicroBeta TriLux, Wallac Inc., Gaithersburg,
MD, USA). Results were expressed as stimulation indexes (cpm of
stimulated cells over cpm of unstimulated control cells).

2.13. IFN-� production

Lymph node cells were plated in 96-well plates (Falcon 3072)
in triplicates at 3 × 105 cells per well and incubated at 37 ◦C, in 5%
CO2, with or without NSRS (10 �g/ml final concentration). Super-
natants were harvested at 72 h and the IFN-� content was tested
using a specific ELISA test (Bovigam, Biocor, Melbourne, Australia),
according to manufacturer’s instructions. Results were expressed
as stimulation indexes (OD450 nm of NSRS-stimulated cells over OD
of unstimulated control cells).
2.14. Detection of NSRS-specific bovine antibody by ELISA

Individual sera and nasal secretions were assayed for N-
specific antibodies (total Ig, IgG1 and IgA) by ELISA. Microtiter
plates (Immulon 2HB, Thermo Labsystems, France) were coated
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vernight at 4 ◦C with N antigen (200 ng per well in 100 �l
arbonate–bicarbonate buffer 0.1 M, pH 9.5). Plates were washed
ve times with PBS 0.05% Tween 20 between each step of the
ssay. After coating, the remaining protein binding sites were sat-
rated with 5% horse serum in PBS 0.05% Tween 20 (PBS-T-HS)
or 1 h at 37 ◦C. Samples were serially diluted threefold in PBS-
-HS starting at 1:30 for sera and 1:3 for nasal secretions and
ncubated for 2 h at 37 ◦C. Antigen-bound Abs were detected using
RP-conjugated anti-bovine Ig(H + L), HRP-conjugated sheep anti-
ovine IgG1 or rabbit anti-bovine IgA (AbD Serotec, Germany)
iluted 1:1000, incubated for 1 h at 37 ◦C, followed when required
y an incubation with goat anti-rabbit Ig HRP-conjugated. The
MB substrate (Kirkegaard & Perry Laboratories Inc., MD, USA) was
dded and the reaction was stopped after 10 min by 1 M phospho-
ic acid. The absorbance was measured at 450 nm with an ELISA
late reader (MRX Revelation, Dynex Technologies, Germany). The
esults were expressed as endpoint antibody titers calculated by
egression analysis plotting dilution versus A450 (regression curve
= (b + cx)/(1 + ax) using Origin software). Endpoint titers were cal-
ulated as the highest dilution giving twice the absorbance of
egative control sample.

Alternatively, plates were coated with a lysate from BRSV-
nfected or mock-infected Turbinate cells in PBS. Lysate was
btained by treating the BRSV-infected or mock-infected Turbinate
ells with 1% n-Octyl glucoside (Sigma–Aldrich, France) and 5 mM
DTA in 10 mM, pH 7.6 Tris saline buffer. Serum samples were
iluted 1:270 and incubated on alternate rows with BRSV-infected
nd mock-infected Turbinate lysates, and the ELISA was performed
s described above. To measure anti-BRSV-specific binding, back-
round antibody binding to control lysate was substracted from
inding to BRSV-infected cell lysate.

.15. Statistics

All data were expressed as arithmetic mean ± standard error
f the mean (SEM). Statistical analysis on immune parame-
ers was performed using non-parametric Mann–Whitney U-test
http://elegans.swmed.edu/∼leon/stats/utest.html). Levels of sig-
ificance are indicated on the graphs with stars: *p < 0.05, **p < 0.01,

**p < 0.001.
Peak clinical signs and viral load values were compared by one-

ay analysis of variance. Logarithmic transformation was applied
o fulfill the conditions of variances in homogeneity and normality
hen necessary. A three-factor split-plot ANOVA test was used to

alculate the effect of the factors ‘day’ and ‘vaccination’ between
roups. For significant results, a Bonferroni’s test among contrast
as then used to compare the two conditions at each day post-

hallenge.

. Results

.1. Nano-rings were obtained with N from HRSV Long strain,
ormulated with MontanideTM adjuvants and tested for their
mmunogenicity

We have previously shown that soluble RNA-nucleoprotein
omplexes forming nano-rings (NSRS) can be purified from bacte-
ia expressing recombinant N and the C-terminal region (residues
61–241) of P protein (PCT) from the HRSV Long strain [20]. The
ame protocol was used in order to purify BRSV N proteins. The

RSV N protein was co-expressed with PCT from either HRSV or
RSV origin. As shown Fig. 1a, the BRSV N protein (strain A2Gelfi)
as only recovered in the unsoluble fraction of bacterial lysates,

nd attempts to purify it by co-expression with GST-PCT were
nsuccessful, either using PCT from BRSV or HRSV origin. On the
8 (2010) 3722–3734

other hand, the HRSV N protein was soluble and efficiently purified
by BRSV PCT fused to GST (Fig. 1a).

The N proteins of human strain Long and bovine strain 3761 are
highly conserved since they share 93.6% of sequence amino acid
identity and 99.2% of amino acid sequence similarity (Fig. 1b). Thus
we used the NSRS nano-rings derived from the HRSV Long strain
as a vaccine candidate against BRSV infection. To control that NSRS

were not degraded after emulsification with MontanideTM ISA71
VG or MontanideTM IMS4132 VG, the proteins present in the two
formulations were analyzed by SDS-PAGE native gel electrophore-
sis and electron microscopy as described previously [20]. In both
cases, the N protein was recovered as SRS (data not shown).

Intramuscular injection is the classical way to vaccinate bovine.
Our previous data in mice showed that nasal vaccination with
the nano-rings NSRS was the most efficient immunization route
for preventing HRSV replication in lung [22]. Thus we decided to
administer the NSRS vaccine via both intramuscular and intranasal
route at the same time (group NSRS i.m. + i.n.) and test the benefit of
nasal vaccination by comparison with a group of calves receiving
the vaccine by intramuscular injection only (group NSRS i.m.). All
calves were vaccinated twice at 3 weeks interval. A third group of
calves was left untreated (group “no vaccine”). No adverse clinical
reactions were observed after the first or second immunizations.

To monitor the immunogenicity of the vaccine regimen, N-
specific antibodies were investigated in serum samples and nasal
secretions (Fig. 2). Calves vaccinated with NSRS either i.m. or
i.m. + i.n. displayed anti-N Ab in serum and in nasal secretions,
detectable after the first immunization and increasing after the
booster immunization (Fig. 2a and b). Anti-N Ab titers were not
different between the two vaccinated groups. The nasal anti-N Ab
response was of IgG1 isotype (Fig. 2c), with lower anti-N IgA titers
arising mostly after the booster immunization (Fig. 2d). Nasal anti-
N Ab titers were higher in the group NSRS i.m. + i.n. compared to
NSRS i.m. (p < 0.05 for Ig titers and p < 0.01 for IgA titers, at day 41).
Non-vaccinated control calves had significant anti-N Ab titers in
blood and nasal secretion only after viral challenge (Fig. 2a and
b, p < 0.01 between days 0–41 and day 62, Ig titers in the no vac-
cine group). The antibodies elicited upon NSRS vaccination were
also able to recognize the native viral N as shown by their specific
binding to BRSV-infected Turbinate cells as antigen (OD×100 at day
41 were 22 ± 10, 287 ± 64 and 188 ± 41, for groups no vaccine, NSRS

i.m. and NSRS i.m. + i.n., respectively, p < 0.01 between vaccinated
and non-vaccinated calves).

3.2. NSRS vaccination reduced clinical symptoms and extension of
lung lesions upon BRSV challenge

After challenge, all calves showed mild clinical signs of upper
respiratory tract infection that were essentially characterized
by slight mucous nasal discharge, except for one calf of group
NSRS i.m. which remained healthy. Cough was observed in two
non-vaccinated calves for 2–3 days. Moderate hyperthermia was
observed in all calves with no statistical differences between the 3
groups (data not shown). Respiratory signs consisted of moderate
to high increased respiratory rates and mild dyspnoea with increas-
ing lung sounds. Dyspnoea was also associated with wheezes and
crackles in some calves. Among the 6 calves of the non-vaccinated
control group, one calf was slightly affected, 4 calves were moder-
ately ill and one calf developed a marked dyspnoea, with abnormal
breathing, discordance, surrounding lung sounds of the cranial lobe,
wheezes and crackles. For the six calves of group NSRS i.m., one calf

showed no clinical signs, 2 calves developed very mild respiratory
symptoms and 3 calves developed a moderate dyspnoea. Finally,
3 calves of the group NSRS i.m. + i.n. developed very mild respira-
tory signs and the other 3 showed a moderate dyspnoea. The mean
clinical scores are shown in Fig. 3. Statistical analyses (three-factor

http://elegans.swmed.edu/~leon/stats/utest.html
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Fig. 1. Production of soluble N from HRSV or BRSV origin. (a) Coomassie blue-stained SDS-PAGE analysis of GST-PCT and N proteins from HRSV (strain Long) and BRSV (strain
A2Gelfi) expressed in E. coli. Cell lysates (L) were centrifuged and the soluble (S) or unsoluble (P) fractions were run on a 12% polyacrylamide gel. Proteins were purified
by glutathione–Sepharose affinity from the cell lysates and the proteins pulled-down with the sepharose beads (B) were analyzed on the same gel. GST-PCT from HRSV or
B
f
(
i

T
C

n

RSV together with the HRSV N protein were soluble, while BRSV N was only found in th
ragment.
b) N protein sequence comparison between HRSV Long strain and BRSV 3761 strain with
dentities and similarities (two dots indicate strong similarity, one dot weak similarity), r

able 2
linical signs and lung lesions post-BRSV challenge.

Clinical signs (days)

Onset (n = 6) Peak (n = 6) Duration

No vaccine a1.4 ± 0.3 6.2 ± 0.7 18.2 ± 0
NSRS i.m. b2.5 ± 0.3* 7.5 ± 0.6 13.5 ± 2
NSRS i.m. + i.n. 2.5 ± 0.3* 8.7 ± 0.4* 14.0 ± 1

a Data (onset, peak, duration) are given as mean ± SEM.
b Stars indicate significant differences using the non-parametric Mann–Whitney U-tes
on-vaccinated group. Onset, peak and duration were not significantly different between
e unsoluble fraction. The HRSV N protein was efficiently purified by the BRSV PCT

the ClustalW2 sequence alignment program. Stars and points indicate amino acid
espectively.

Lung lesions at day 6

(n = 6) Extent (%) of consolidation in cranial left/right lobes per calf

.6 10/10; 20/15

.5 5/5; 5/5

.5* 5/0; 5/5

t (p one-tailed) between the vaccinated groups (NSRS i.m. or NSRS i.m. + i.n.) and the
the NSRS i.m. and NSRS i.m. + i.n. vaccinated groups.
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ig. 2. N-specific antibody responses elicited in serum and nasal secretion upon NSR

day 0 and 21) followed by challenge with BRSV (day 42). (a) Serum Ig(H + L) and (b)
gA Ab were quantified in nasal secretions (c and d). Data are expressed as mean ±
he two vaccinated group (NSRS i.m. and i.m. + i.n.) and the non-vaccinated one.

plit-plot ANOVA test) indicated group and time effects between
he non-vaccinated group and the groups NSRS i.m. or NSRS i.m. + i.n.
o differences were found between the two vaccinated groups

NSRS i.m. and NSRS i.m. + i.n.). Significant reduction of mean clin-
cal scores (Bonferroni’s test among contrast, p < 0.05) was found
or the group NSRS i.m. at days 5 and 6, for the group NSRS i.m. + i.n.
t days 5–7 post-infection when compared to the non-vaccinated

roup (Fig. 3). Onset, peak and duration of clinical scores were cal-
ulated for each group (Table 2), showing delayed onset, peak and
horter duration of clinical symptoms in the two vaccinated groups.
hus the calves vaccinated with NSRS, either i.m. only or i.m. + i.n.,

ig. 3. Clinical scores following BRSV challenge. Respiratory rhythm, anorexia, pres-
nce of nasal discharge, lung sounds, cough and demeanour were recorded daily
fter challenge and clinical scores were calculated. Data represent means ± SEM
n = 6) in each group from day 0 (challenge) to day 19 after challenge. Stars indicate
ignificant differences between the two vaccinated group (NSRS i.m. and i.m. + i.n.)
nd the non-vaccinated one.
ination and BRSV challenge. Calves were vaccinated twice with NSRS i.m. or i.m. + i.n.
Ig(H + L) titers to N were measured by an ELISA endpoint assay. N-specific IgG1 and
nd plotted with a logarithmic scale. Stars indicate significant differences between

were partly protected against the respiratory disease caused by
virus challenge.

Two out of 8 calves of each group were euthanized on day 6 after
challenge. The lungs were examined and the extent of macroscopic
lesions was recorded. For all animals gross lesions were restricted to
the cranial lobes except for one non-vaccinated calf showing lesions
also in the middle and accessory lobes. Some patchy areas were
atelectasic, collapsed, deep red and rubbery in texture. Extension
of the lung lesions of calves is detailed in Table 2 for the right and the
left cranial lobes respectively. To summarize, the extension of con-
solidation lesions varied between 10% (Fig. 4a, right cranial lobe)
and 20% for unvaccinated calves while it was estimated to be 5% for
the vaccinated calves (Fig. 4b, right cranial lobe). No macroscopic
lesions were found for calves euthanized on day 20 post-challenge.

Histological examination of lung tissue sections (sample from
right cranial lobe, taken at the site of macroscopic lesions) revealed
typical bronchointerstitial pneumonia (Fig. 4c and e) characterized
by necrotizing bronchiolitis, formation of bronchiolar epithelial
syncitia and proliferative alveolitis in 2 calves from the non-
vaccinated group. In contrast, lung tissue sections from 3 out of
4 vaccinated calves (2/2 NSRS i.m. + i.n. and 1/2 NSRS i.m.) showed
limited cellular infiltration in the peribronchiolar and bronchiolar
areas, with minimal densification of the alveolar areas (shown of
one NSRS i.m. + i.n. calve, Fig. 4d). Besides, most of the bronchiolar
lumina were clear of cellular debris (Fig. 4f). The presence of BRSV-
infected cells was revealed by immunostaining on the same lung
tissue sections. BRSV-specific staining was found in the epithelial
cells of the bronchioles from either vaccinated or non-vaccinated
calves (Fig. 4g and h, brown staining).
3.3. NSRS vaccination reduced BRSV loads in nasal secretions

The replication of BRSV in the respiratory tract of infected calves
was further investigated by real time RT-PCR on BAL cells and
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Fig. 4. Macroscopic and microscopic lung lesions following BRSV challenge. On day 6 post-BRSV challenge (peak of clinical scores), two calves per group were euthanized
and their lungs dissected out for macroscopic analysis of lesions (a and b). Lung pieces were sampled in the right cranial lobe at the border between red atelectatic collapsed
pulmonary areas and healthy tissue, fixed in formalin and embedded in paraffin. Histological examination of sections counterstained with hematoxylin/eosin/saffran showed
areas of bronchointerstitial pneumonia with proliferative alveolitis in non-vaccinated calves. This marked infiltration of inflammatory cells was observed in the alveolar,
peribronchiolar and bronchiolar areas (c) and was associated to a necrotizing bronchiolitis (e). Bronchiolar lumen contained sloughed necrotic epithelial cells and sometimes
multinucleate syncytial cells closely associated with the bronchiolar epithelium, and few inflammatory cells infiltrating the bronchiolar epithelium. Similar sections in
vaccinated calves showed alveolar functional areas with minimal thickening of alveolar septa (d) and bronchiolar lumen clear of cellular debris (f). The same lung tissue
s rown
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i c cells
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ections were stained for BRSV antigens with an anti-F monoclonal antibody (b
mmunohistochemical reaction with an isotype-matched irrelevant mouse IgG wa
nfected bronchiolar epithelial cells (g and h) with viral antigens among the necroti
his figure legend, the reader is referred to the web version of the article.)
ung samples (right cranial lobe). At day 6 post-infection, viral RNA
as detected in BAL cells and lung tissue of the two euthanized

alves of each group with no significant differences between groups
Fig. 5a). These data are in agreement with the finding of BRSV-
nfected cells in lung tissue sections by immunostaining. No virus
staining) and counterstained with hematoxylin (pale blue staining). The control
ative (data not shown). Immunohistochemical staining of BRSV-F revealed virus-
sloughed the bronchiole lumen (g). (For interpretation of the references to color in
could be detected at day 20 post-infection in BAL and lung of any
calves.

The kinetic and amount of virus shedding was monitored in
nasal secretions on a daily basis post-challenge. BRSV RNA was
detected in nasal secretions of all infected calves (Fig. 5b and c) with
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Fig. 5. BRSV RNA detection and viral load following challenge. The viral loads were
examined by performing quantitative real time RT-PCR on total RNA extracted from
BAL cells and lung pieces collected on two calves per group euthanized on day 6 after
challenge (a) and from the nasal swabs sampled daily from the day of challenge up
to 19 days after (b and c). Viral load is expressed as the log of BRSV copies per 107
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Fig. 6. Cell subsets recruited to the BAL following BRSV infection. Two calves per
group were euthanized 6 days after BRSV challenge and the other calves were
euthanized 20 days after challenge. Lungs were dissected out of the thoracic cage
and lavaged with 500 ml of medium. The cells present in BAL were collected
by cyto-centrifugation. The cellular composition of the BAL was established after
May-Grünwald-Giemsa coloration and numeration of macrophages, lymphocytes,
neutrophils and eosinophils (a). BAL cells were labeled with anti-CD45RO, CD4 and
APDH cDNA (mean ± SEM, n = 6). Stars indicate significant differences between the
wo vaccinated group (NSRS i.m. and i.m. + i.n.) and the non-vaccinated one. The daily
ercentage of positive calves per group is shown (c).

peak of virus shedding at day 5 post-challenge (103.6±1, 102.9±0.7

nd 103.8±1.2 copies/107 copies of GAPDH for groups no vaccine,
SRS i.m., and NSRS i.m. + i.n., respectively). No significant differ-
nces were found between the two vaccinated groups. However,
tatistical analyses (three-factor split-plot ANOVA test) indicated
roup and time differences between the two vaccinated groups and
he non-vaccinated group. Lower amounts of viral RNA were found
n group NSRS i.m. at days 4 (p = 0.06) and 11 (p < 0.05) and in group

SRS i.m. + i.n. at days 2, 3 and 11 (p < 0.05, Fig. 5b). Importantly the
uration of viral excretion in nasal swabs was reduced in the vac-
inated groups, BRSV being detected in swabs from days 1 to 17
ost-infection in non-vaccinated calves versus days 1–8 in group

SRS i.m., and days 1–11 in group NSRS i.m. + i.n. (Fig. 5c). In addition,

he detection of BRSV proteins in nasal secretions by EIA assay on
ve calves of each group at days −1, 0, 2 to 7, 9, 11, 13 and 15 post-

nfection showed that less calves were found positives on a daily
CD8 antibodies and analyzed by flow cytometry to determine which T lymphocyte
subsets were recruited to the lung upon infection (b). 200,000 events were acquired,
gated on lymphocytes according to FSC/SSC and CD45RO+ criteria (at least 5000
events were gated). Data are mean ± SEM, n = 2 at day 6 and n = 6 at day 20.

basis in the two vaccinated groups compared to the non-vaccinated
group (data not shown).

3.4. NSRS vaccination and BRSV challenge was associated with
few granulocytes and mixed T cell subsets in BAL

Respiratory infection is usually accompanied by an influx of
lymphocytes and granulocytes into the lungs. BAL cells were
collected from calves euthanized on days 6 (n = 2) and 20
(n = 6) after challenge and the percentages of macrophages, lym-
phocytes, neutrophils and eosinophils were determined after
May-Grünwald-Giemsa staining. Six days after infection, we
observed neutrophils in all BAL whether or not the calves had been
vaccinated (18 ± 4%, n = 6, Fig. 6a, black bars). Twenty days post-
challenge, the percentages of neutrophils in BAL ranged between
0.1 and 2.5%, without any significant differences between the three
groups (no vaccine, NSRS i.m. and NSRS i.m. + i.n.). No eosinophils
were found in BAL at 6 and 20 days post-challenge (Fig. 6a).

To get an insight into the pattern of T cell responses in the lung
upon challenge, CD4 and CD8 T lymphocytes in BAL were moni-
tored by flow cytometry analysis (Fig. 6b). Lymphocytes were gated
according to their low FSC/SSC features and memory/activated
lymphocytes were subsequently gated on the basis of CD45RO
expression. The proportion of CD4+ and CD8+ cells within gated
CD45RO+ lymphocytes was determined. For the non-vaccinated

calves experiencing a primary BRSV infection, CD8+ effector lym-
phocytes were found rapidly and more abundantly than their CD4+

counterpart into the airways (Fig. 6b, day 6). The same pattern
of T cell subsets on day 6 post-challenge (% CD8+ > CD4+ mem-
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Fig. 7. N-specific memory T cell responses following vaccination and challenge. The
lymph nodes draining the site of i.m. vaccination (prescapular) and the upper and
lower respiratory tract (tracheo-bronchial and mediastinal, respectively) were dis-
sected out on day 20 after BRSV challenge and processed to isolate lymph node cells.
(a) In vitro lymphocyte proliferation was evaluated by measuring [3H]thymidine
incorporation after NSRS or mock antigenic restimulation for 96 h and values were
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SRS
xpressed as stimulation index (SI). Individual SI is plotted for each group (square,
ircle, triangle) and the mean is shown next (black line). (b) IFN-� was measured in
he supernatant of lymph node cells cultivated for 72 h with NSRS or with medium
nly (mock). Results are expressed as SI and data displayed individually as in (a).

ry/effector cells) was observed for the NSRS i.m. vaccinated calves
hereas calves from the group vaccinated with NSRS i.m. + i.n.

ended to have more memory/effector CD4+ than CD8+ T cells
nto their airways. By day 20 post-challenge, CD45RO+ CD4+ and
DR45RO+ CD8+ T cells were found in same proportion among BAL
ells without significant differences between groups.

.5. NSRS vaccination and BRSV challenge primed N-specific T
ells in calves

In primary BRSV infection of calves, N is a known target of cell-
ediated immunity [29]. Thus we tested whether NSRS vaccination

ad primed memory T cells responses that could be revealed post-
hallenge. Leukocytes were isolated from lymph nodes on day 20
ost-BRSV challenge and then restimulated in vitro with NSRS. N-
pecific cellular responses were measured by proliferation index
ased on tritiated thymidine incorporation (Fig. 7a). To get insight

nto the function of T lymphocytes elicited upon NSRS immunization
nd BRSV challenge, their capacity to make IFN-� was assessed by
LISA in lymph node cell culture supernatant (Fig. 7b).
N-specific T cell responses were primed in the prescapular
ymph node draining the site of i.m. vaccination with NSRS. Only

SRS vaccinated calves displayed a N-specific proliferative response
stimulation index of 4.2 ± 1.4 and of 3.4 ± 0.7, NSRS i.m. and NSRS

.m. + i.n. respectively, versus 1.1 ± 0.1 for non-vaccinated calves,
 (2010) 3722–3734 3731

p < 0.05). Accordingly the capacity of T cells isolated from the
prescapular LN to make IFN-� was significantly higher in the vac-
cinated calves than in the non-vaccinated one (p < 0.05% between
no vaccine and NSRS i.m.).

Cells isolated from the lymph nodes draining the upper airways
(tracheo-bronchial LN) and the lung (mediastinal LN) prolifer-
ated in response to NSRS and the mean proliferation index of the
two vaccinated groups was not different from the non-vaccinated
group, suggesting a T cell priming mainly due to BRSV infection.
However when T cell memory responses were monitored by IFN-
� production in tracheo-bronchial LN, the vaccinated calves had
higher responses than the non-vaccinated one (p < 0.05% between
no vaccine and NSRS i.m. + i.n.). The strongest IFN-� production
was recorded in the mediastinal LN and tended to be higher for
T cells isolated from vaccinated calves (SI of 1.4 ± 0.2, 2.7 ± 0.6 and
2.4 ± 0.5 for no vaccine, NSRS i.m. and NSRS i.m. + i.n. respectively,
p = 0.07 between no vaccine and NSRS i.m. and p = 0.06 between
no vaccine and NSRS i.m. + i.n.). Thus the IFN-� response in the
lymph nodes draining the airways was suggestive of memory T cells
primed by NSRS vaccination and boosted upon BRSV challenge.

4. Discussion

No RSV vaccine is yet licensed for human use and the inac-
tivated or attenuated vaccines commercialized for bovine have a
limited efficacy and a short duration of protective immunity. Dif-
ficulties of RSV vaccine development include the lack of a relevant
animal model for human, the need to immunize immunologically
immature young infants or calves with maternal RSV antibodies,
the impact of RSV variability on vaccination and the risk of vaccine-
associated disease enhancement. We were the first to publish an
efficient and safe vaccination strategy against RSV using the nucle-
ocapsid protein alone as a vaccine antigen, under the form of soluble
nanoparticles referred to as NSRS [22]. In this previous study done
in mice we have demonstrated that NSRS is highly immunogenic
when delivered via the nasal route and that the immune response
primed upon vaccination is protective against an HRSV challenge
[22]. In the present study, we investigated the potency of NSRS as
a vaccine in calves that are the natural hosts for BRSV and display
clinical respiratory symptoms and lung lesions upon infection.

Our findings indicate that calves vaccinated with NSRS were par-
tially protected against the respiratory disease caused by a virus
challenge. Significantly lower clinical scores were observed for
two to three days in the vaccinated calves compared to the non-
vaccinated calves and the duration of clinical signs was reduced in
the vaccinated calves. At the precise site of virus-induced lesions, in
the cranial lobe of the lungs, the vaccination with NSRS reduced the
extent of local inflammatory consolidation. The vaccination with
NSRS reduced the duration of viral shedding and the frequency of
virus-secreting calves on a daily basis but it did not prevent viral
shedding in nasal secretion, nor viral replication in lung. There was
no difference between the two vaccination regimen (i.m. only or
i.m. + i.n.) for their capacity to reduce clinical scores and viral load.

Importantly the degree of protection conferred by vaccination
with NSRS was not associated with markers of disease exacerba-
tion (like eosinophilia) as is reported when vaccinating calves with
FI-BRSV or live-BRSV [6]. Indeed no eosinophils and very few neu-
trophils were found in broncho-alveolar lavages of calves autopsied
3 weeks after challenge.

Several points of discussion could explain the partial protection

of calves by vaccination with N , whatever the protocol used.

Clear respiratory symptoms and lung lesions were induced upon
BRSV challenge but they were not severe. As frequently published
with BRSV challenge models [30–32], it is difficult to reproduce the
severe clinical signs or lesions observed upon natural infections.
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n calves normally bred in farms and not in isolation units like in
he present study, bacterial or virus co-infections complicate the
lassical BRSV disease. The bovine parainfluenza virus 3 (BPIV-3),
hich is widespread in 2–8-month-old cattle, reduces pulmonary
efences [33,34] and thus may enhance the severity of the BRSV
athogenicity. Both viruses, BRSV and BPIV-3, are important predis-
osing factors in the development of bacterial bronchopneumonia

n cattle. In addition intrinsic host parameters seem to control the
everity of the disease since severe pathology is associated with
ysfunctions of the host’s response [8]. In this study, we used a
RSV 3761 inoculum which was previously shown successful in
eproducing severe respiratory signs after intranasal and intra-
racheal injections of 1 and 3-month-old Prim’Holstein calves (G.

eyer, unpublished results; [18]). This inoculum contained BRSV
ith few passages in cell cultures and with 3 cycles of amplifica-

ion in newborn calves, a condition also shown by others to induce
evere respiratory disease in calves [35,36]. By comparison with
revious successful experiments, failure to reproduce respiratory
istress syndrome in this study could be related to host intrinsic
arameters. Indeed, another study, using the same inoculum and
rossed Prim’Holstein/Normandy calves of same origin, also failed
o reproduce respiratory distress [19].

The nucleoprotein subunits (NSRS) used in this study were from
RSV origin. The gene encoding the nucleoprotein is shown to be
ne of the most conserved between BRSV and HRSV with an average
f ≈94% amino acid identity. The nucleoprotein from BRSV is recog-
ized by bovine CD8+ T cells but the precise CTL epitopes have not
een defined yet [29]. In human, HLA-B07, HLA-B08 and HLA-A02
estricted epitopes were mapped in the nucleoprotein [12,14] and
nterestingly their amino acid sequence is fully conserved among
arious HRSV field isolates and with BRSV strains [14]. The mecha-
isms of CTL cross-reactivity have been recently investigated with
ell-characterized CTL epitopes from HIV showing that biochem-

cally similar amino acid substitutions do not drastically affect
ecognition by TCR [37]. Some level of cross-protection between
RSV and BRSV has been demonstrated in the cotton rat model

n which BRSV was tested as a possible Jennerian vaccine against
RSV [38]. Among the viral antigens that may be cross protec-

ive between BRSV and HRSV, the BRSV-F (81% amino acid identity
ith HRSV-F), delivered as DNA vaccine, was shown to protect
ice against an HRSV challenge [39]. The present study brings

ew data to support the hypothesis of common B or T epitopes
etween BRSV and HRSV nucleoproteins. Indeed, in our study, pri-
ary BRSV infection resulted in antibody and cellular immunity

hat could be revealed with an NSRS coated ELISA assay or following
n in vitro boost with NSRS, respectively. Conversely serum Ab from
SRS vaccinated calves reacted against a BRSV-infected cell lysate.
his indicates that recombinant N from HRSV origin assembling
nto nano-rings and the nucleocapsid protein N from BRSV strain
761 displayed at least some common epitopes and that vaccina-
ion with NSRS from HRSV protein sequences provide significant
ross-protection against BRSV challenge in calves.

Finally, several parameters such as the dose of vaccine, the type
f adjuvant and the route of administration may have influenced
he degree of protection. The oil based adjuvants in our NSRS vac-
ine are from the MontanideTM range that are present in several
eterinary vaccines used in the field to eradicate viral diseases (e.g.
oot and mouth disease) in many countries and for decades. In the
resent study, we aimed at inducing a strong cellular response
herefore we selected a dedicated mineral oil based adjuvant for
ntramuscular vaccination (ISA 71 VG). For intranasal vaccination
e selected one adjuvant from the MontanideTM IMS technology
IMS 4132 VG) that has physical properties (flow-ability, viscosity)
ermitting an easy delivery in animal nostril.

The intramuscular route is a classical way of injection for inacti-
ated vaccines. As it is true for live virus, intranasal vaccination
8 (2010) 3722–3734

with live-BRSV or modified-live-BRSV vaccine has been shown
to be more efficacious in reducing viral shedding than intramus-
cular administration in young calves [40,41]. Moreover, a single
intranasal vaccination has previously been shown to prime calves
in the face of maternal antibodies [41]. Commercially available
modified-live-BRSV vaccines that were formulated and licensed
for parenteral use were shown to induce partial protection when
administered intranasally [42]. Recently a single intranasal dose of a
bivalent modified-live vaccine was shown to reduce nasal shedding
of BRSV after challenge at 10 or 21 days post-vaccination, despite
low BRSV neutralizing antibody titers detected after vaccination
[32].

Thus we have chosen the two vaccination regimen used in
the present study based on the hypothesis that administration
of NSRS via the nasal route would strengthen any level of pro-
tection conferred by the intramuscular vaccination. However no
differences in clinical and viral protection were observed between
calves vaccinated intramuscularly only, versus intramuscularly
plus intranasally. This could be explained by a weak response to
the intranasal vaccination or a masking of the immune response
induced after intranasal vaccination by those obtained after intra-
muscular vaccination. Unfortunately, due to a restricted number of
BRSV seronegative calves, it was not possible to have a supplemen-
tary group of calves vaccinated only by the intranasal route.

By itself, the intramuscular administration of NSRS powerfully
stimulated mucosal and systemic Ab responses and cellular immu-
nity. The intranasal administration of NSRS given with the i.m.
immunization increased some immune responses at the level of
the upper respiratory tract: memory T cells producing IFN-� in
tracheo-bronchial lymph node and antigen-specific IgA in nasal
secretion.

The expression of CD45RO is considered a reliable marker to
monitor activated CD4 and CD8 T cells in bovine [43,44]. In the
context of primary infection with BRSV, CD8 T cells are the pre-
dominant subset recruited to the airways [45] and prior vaccination
with inactivated or live-attenuated virus can modify the pattern
of T cell responses [46]. We had reported previously a preferen-
tial priming of CD4 responses following challenge with HRSV-A2
of mice vaccinated intranasally with NSRS [22]. Thus it is possible
that the intranasal delivery of NSRS was responsible for the early
presence of CD45RO+ CD4+ T cell in bovine airways post-challenge
of the i.m. + i.n. vaccinated calves.

However, the nasal vaccination might not have been efficient
enough to prime protective local anti-viral immunity. This could
be related to the type of adjuvant used, the delivery device/route,
the antigen itself. Additional studies will be necessary to improve
intranasal vaccination with NSRS by testing several doses of anti-
gen in association with adjuvants used for intranasal delivery and
to compare results with those obtained after intramuscular vacci-
nation.

What are the immune correlates of the viral and clinical protec-
tion afforded by the NSRS vaccination?

We have shown in our previous study in mice that the anti-
bodies raised against N were not neutralizing and thus unlikely to
be involved in the anti-viral protection. Cellular immunity medi-
ated by virus-specific CD8 T cells is required to clear BRSV from
the lungs of infected calves in a primary infection [47,48] and N
is one of the main targets of CD8+ T cell responses to BRSV [29].
In the present study we have shown that NSRS vaccination primed
antigen-specific T cell memory responses, characterized by their
capacity to proliferate and secrete IFN-�. In other studies imply-

ing NSRS vaccination in mouse or lamb animal models we have
shown that N-specific memory CD8 and CD4 T cell are primed ([22]
and S. Riffault unpublished results). Recently a vaccination regimen
using the nucleoprotein in a DNA prime–protein boost protocol was
shown to be superior to DNA or protein vaccination alone to prime
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ntigen-specific CD8 memory T cells, to protect against BRSV repli-
ation and to reduce lung pathology [19]. However, because DNA
accination is not authorized in human, the use of N protein alone
or vaccination of newborn children could be an interesting alter-
ative approach. Moreover NSRS can be produced in large amount

n bacteria and their nanoring structure is very stable either at 4 ◦C
r 20 ◦C (our unpublished observations), making their production
nd storage cheap and easy.

Setting up the right conditions for cross-protective cellular
mmunity against conserved antigens is a growing challenge in
he vaccinology field nowadays (e.g. universal Influenza vaccine).
he nucleoprotein subunit approach described in the present study
s efficient for inducing cross-protective immunity against RSV.
nterestingly the NSRS structures are very potent at stimulating anti-
ody responses both at the systemic and mucosal levels. We have
ecently obtained the X-ray 3D structure of the NSRS [21] and have
een able to map exposed sites on the nano-rings to which other
ntigenic motifs can be grafted. Our next goal will be to improve
he degree of protection by using RSV nucleocapsid nanoparticles
rafted with peptidic epitopes from the BRSV fusion- (F) and glyco-
G) proteins in order to trigger neutralizing antibody responses in
ddition to anti-N cellular responses.
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